We have moved premises!

We would like to inform our clients, suppliers and partners that we have now moved premises! As of 10th December 2020 you can now find our new building on Victory Road in Derby. Our new address is:

Scitek Consultants Ltd.
152 Victory Road
Derby
DE24 8EN

Our contact telephone number will remain the same.

+44 (0) 1332 365 652

Whilst we won’t be able to have the grand opening we might have hoped for due to current Covid-19 restrictions, we are looking forward to welcoming you through our new doors as soon as possible!

SCITEK new location

Enhanced Software Defined Telemetry system for ground and flight testing

Over the past year, SCITEK Consultants Ltd. and TBG Solutions Ltd have been working on a prototype for an exciting new product: an Enhanced Software Defined Telemetry (ESDT) system for ground and flight testing. This new project forms part of an Aerospace Technology Institute (ATI) funded collaborative R&D programme.

Currently, gas turbine engine manufacturers make use of analogue radio frequency-based telemetry systems when monitoring strain and temperature measurements in rotating engine parts during ground and flight testing.

This project is focused on exploiting the benefits of moving from an analogue radio frequency platform to a digital radio frequency replacement.

The Enhanced Software Defined Telemetry system provides a superior solution in that its parameters are defined in software and can thus be changed to provide enhanced performance or for re-purposing the system to suit new requirements.

What’s more, the project aims to push the capability of the ESDT system well beyond what was originally conceived in order to achieve at least a four-fold increase in data rate transfer compared to the original analogue systems.

Expanding transmission capacity in this way will allow engine manufacturers to monitor more sensors simultaneously, thus reducing the number of test-runs, saving costs, fuel, and reducing the development time and environmental impacts of testing.

The prototype system will first be demonstrated on SCITEK’s Honeywell ALF 502 engine.

  • To find out more about the specifications of the prototype ESDT system Click here
  • To find out more about SCITEK’s engine testing facility Click here

For more information on the system you can get in contact with SCITEK or TBG Solutions Ltd using the contact details below.

SCITEK Consultants Ltd

SCITEK Logo

+44 (0) 1332 365 652

enquiries@scitekconsultants.co.uk

https://scitekconsultants.co.uk/

TBG Solutions Ltd

TBG Solutions

+44 (0) 1246 819 100

info@tbg-solutions.com

https://tbg-solutions.com/

SCITEK COVID-19 Update

We would like to advise all our customers and suppliers that we are continuing to operate as normally as possible during the COVID-19 pandemic. We can confirm that SCITEK is following government guidance on social distancing measures and that our office layout has been rearranged to accommodate this. Best practice hygiene requirements are also being enforced and we are reviewing government guidelines on a daily basis.

Our technicians are continuing to support our manufacturing work, whilst adhering to government guidelines. Please rest assured that we are still very much open for business. 

Please feel free to contact us in the normal manner by calling us on the main office telephone number 01332 365 652 sending us an email at: enquiries@scitekconsultants.co.uk

A GT Facility for the development of new sensor and other technologies

SCITEK presented their new Gas Turbine facility currently under development, at the 9th EVI-GTI Conference which took place in Graz last week.

Find out more in our abstract below. Author: Marios Christodoulou

We live in a world of connectivity, with mobile phones and other personal devices equipped with instrumentation that can record our everyday activities generating a large amount of data and statistics that help us (or otherwise) know more about our daily actions and health. Sophisticated sensors have become smaller, cheaper and are built in to everyday gadgets. The use of new and innovative instrumentation has not greatly increased in gas turbine engines partly because the operating environment is harsh and also due to difficulty in convincing engine manufacturers to try out new sensors on their engines. Engine manufacturers want to buy new technologies in a fully developed state. However, this requires many cycles of testing on GTs leading to a catch 22 situation and in effect stifles innovation.

Including new sensors that are at TRL4 in a GT development programme is not attractive and not a high priority during engine development as engine manufacturers face other more challenging technological and financial pressures. Typically, a new engine is developed every ten years with the development time lasting five years. For sensor manufacturers, this is too long and costly which only provides them with an opportunity to try a new sensor on an engine every ten years. This greatly discourages innovation and the proof is the limited number and type of sensors currently installed on flying engines.

There is clearly a need for a facility that is independent of OEMs using low cost retired engines as a platform for innovative technologies to be developed and tested to TRL7. Such a facility will be significantly more cost-effective, offering sensor companies lower development costs and a significant reduction in the development time of their products. It will also have the added advantage of providing experience and training to non-aerospace companies to adapt mainstream products for use in aerospace which will encourage innovation.

SCITEK is already in the process of establishing this facility using a small geared turbofan engine which will initially be used as part of an ATI funded project starting in June/July 2019, to develop an innovative telemetry product. This engine facility will also be made available to other companies for the demonstration and development of new technologies. Other types of engines, smaller and bigger can also be used in the future. Hands on training courses to aspiring aerospace engineers will also be offered as part of the service, either as part of a university course, or to employees of engine OEMs where it is more difficult to get hands on engine experience.

SCITEK considers that such a facility will facilitate a step change in the development of new and innovative technologies of benefit to the GT community.

Email Marios at marios@scitekconsultants.co.uk to find out more about our Gas Turbine facility.

SCITEK to present at 9th EVI-GTI International Gas Turbine Instrumentation Conference in Graz

SCITEK are excited to announce that they will once again be presenting at this year’s EVI-GTI Conference on Gas Turbine Instrumentation, held in Graz on 20th and 21st November 2019.

Each year the conference attracts a wide international crowd from the fields of measurement and control, looking to gain an insight into the latest innovations in gas turbine measurement and analysis.

SCITEK is delighted to be carrying out two presentations at the conference centred on the topic of test cell concepts and instrumentation.

Catch our presentations between 10.30 and 12.10am on Wednesday 20th November 2019:

  • A GT Facility for the Development of New Sensor and Other Technologies 
  • Advanced Rig for Permanent Magnet Alternator Testing

Click to see the full conference programme here. For more information, please visit the conference homepage at www.evi-gti.eu

SCITEK to Present at EVI-GTI and PIWG Conference on Gas Turbine Instrumentation

 

SCITEK are thrilled to announce that they will be attending and presenting at this year’s EVI-GTI Conference on Gas Turbine Instrumentation, held in Berlin on the 26th-29th of September 2016.

 

The programme features technical contributions from leading industry names from across the globe and offers unrivalled opportunities to hear the latest research and trends in gas turbine instrumentation and measurement. New innovations, new techniques and new concepts are all at the forefront of this highly anticipated conference programme. 

Who can you expect to hear from?

There is a packed programme at GTI 2016 spanning 3 full days, including technical sessions delivered by representatives from:

  • IfTA GmbH, Germany
  • GKN Aerospace, Sweden
  • SCITEK Consultants Ltd, UK
  • Rolls Royce Plc, UK
  • Avio Aero GE Aviation Business, Italy
  • Honeywell Aerospace Co, USA
  • Siemens AG, Germany
  • ITWL – Air Force Institute of Technology, Poland
  • Prime Photonics, USA
  • Arab Academy for Science and Technology, Egypt
  • Meggitt Sensing Systems, Switzerland

 

Pdf_icon_32x32  Click to see the full conference programme here.

SCITEK’s Continued Commitment to Health and Safety

SCITEK has been awarded accreditation from Safecontractor for its commitment to achieving excellence in health and safety.

 Safecontractor is a leading third party accreditation scheme which recognises very high standards in health and safety management amongst UK contractors.

 The company’s application for Safecontractor accreditation was driven by the need for a uniform standard across the business.

Health and safety

 John Kinge, technical director of Safecontractor said, “Major organisations simply cannot afford to run the risk of employing contractors who are not able to prove that they have sound health and safety policies in place.”

 “More companies need to understand the importance of adopting good risk management in the way that SCITEK has done. The firm’s high standard has set an example which hopefully will be followed by other companies within the sector.

 Safecontractor plays a vital role in supporting our clients in meeting their compliance needs, whilst working with their contractors as they progress through the accreditation process.”

 Under the Safecontractor scheme, businesses undergo a vetting process which examines health and safety procedures and their track record for safe practice. Those companies meeting the high standard are included on a database, which is accessible to registered users only via a website.

 Over 210 major, nation-wide businesses, from several key sectors, have signed up to use the scheme when selecting contractors for services.

SCITEK’s Presentation on Determining the Fatigue Life of Aero-Engine Blades

 

SCITEK were delighted to have given a presentation at this year’s NIDAYS on its commercially available Airjet Exciter system, which determines the fatigue life of Aero Engine Blades.

 

To give you a bit of background, Engine manufacturers need to know the fatigue life of every type of blade in their engine. This is effectively the weakest link as it is the component with the shortest life.

NIDAYS Promo_V2

The fatigue life is determined during the development of new engines and for quality assurance reasons the fatigue life is also constantly checked to ensure manufacturing processes are consistent.

There is therefore a requirement for a system that can accurately measure the number of cycles before a blade fatigues, and that is exactly what our Airjet Exciter system does.

A copy of the presentation given at NIDAYS can be viewed below:

Pdf_icon_32x32SCITEK – Fatigue Aero Engine Blades NiDays 2014

To find out more about our commercially available Airjet Exciter system please get in touch.

 

SCITEK to present Novel Airjet Exciter System at NIDays in November.

 

SCITEK will be giving a presentation on Determining the Fatigue Life of Aero-Engine Blades using their Airjet Exciter System at this year’s National Instruments Conference in November.

 

This annual technical conference and exhibition will bring together more than 600 engineers, scientists and educators representing a spectrum of industries, from automotive and telecommunications to robotics and energy. 

NIDays2014_732x250

It will provide an excellent opportunity to learn about the latest technology to accelerate productivity for software-defined systems in test, measurement and control.

Come and visit our stand to discuss your engineering challenges.

 

SCITEK is pleased to announce it will be exhibiting at the Engineering Simulation Show -2014

 

The Engineering Simulation Show brings together many of the greatest businesses in the engineering simulation field with many of the world’s largest engineering businesses in the UK.  The show is to be held at the Derby Roundhouse on the 23rd of April.

The show will bring together 1000s of FEA, Design, Stress, CFD and Structural engineers across a wide range of disciplines and industrial sectors who share a professional interest in the use of engineering simulation software. The show will offer a unique opportunity for software developers and VARs to engage with this audience to promote software and identify new potential business possibilities. It will also allow your business to showcase new product and service development, and to demonstrate how these platforms solve the most challenging engineering problems.

Engineering Simulation Show

The event will attract a broad engineering audience from small consultancies through to large engineering OEMs who have an interest in the simulation field, and will provide a unique opportunity for organisations involved in the creation of, practical application of and training in these techniques.

Come and visit our stand to discuss your engineering challenges.

SCITEK Supports ETI Project to Investigate the Safe use of Hydrogen Base Fuels in Power Generation

A £2 million project to advance the safe design and operation of gas turbines, reciprocating engines and combined heat & power systems using hydrogen based fuels has been launched by the Energy Technologies Institute (ETI.)  ETI is a public private partnership between six global industrial companies – BP, Caterpillar, EDF, E.ON, Rolls-Royce and Shell – and the UK Government who’s tasked with developing “mass scale” technologies that will help the UK meet its 2020 and 2050 energy targets.

Through new modelling and large-scale experimental work the ETI project is looking to identify the bounds of safe design and operation of high efficiency CCGT (combined cycle gas turbine) and CHP (combined heat and power) systems operating on a range of fuels with high and variable concentrations of hydrogen.

The goals of the project are to increase the range of fuels that can be safely used in power and heat generating plant by:

  • In identifying the boundaries of safe design and operation of power generation systems using hydrogen based fuels; and
  • Identifying improvements in the detailed design and instrumentation of hydrogen fuelled power systems in order to deliver more robust and inherently safer system designs.

SCITEK’s involvement with the ETI project is to assist in the design, manufacture and instrumentation of a scaled down experimental rig that features a small gas turbine engine (RR Viper 201) to provide hot gas flow.

SCITEK has also assessed the mixing characteristics of the proposed gas injection system utilising CFD modelling of high temperature, compressible gas jets in cross flow, with species transport.

SCITEK supplies a Cold Neutron Radiography Machine worth £1.2m

SCITEK Consultants Ltd, in conjunction with RadSci Consultancy Ltd, have designed and manufactured a complete Cold Neutron Radiography facility for installation on one of the beamlines of a nuclear reactor at a Chinese research centre.

The Cold Neutron Radiography system uses neutrons to build up three-dimensional pictures of the interiors of static objects or of operating machinery , highlighting the presence within them of the hydrogen present in water, oil, fuel or corrosion products. This imaging technique is similar to X-Rays and can be used to identify internal corrosion in aircraft components, to study internal capillary passageways in plants and to identify the make up or the presence of damage due, for example, to corrosion in bronze components of archaeological objects.

 The equipment includes:- the main neutron shutter, an automated neutron aperture selector, an 11m long vacuum flight tube, neutron beam profiler, 3-axis object handling system (up to 300 kg objects), turntable for neutron tomography (up to 25kg objects) and a neutron imaging system based on an Andor iKon-L 4 Mpixel cooled CCD camera and neutron-sensitive scintillation screen.

 Scitek and RadSci have also designed the neutron beam stop for the Chinese customer to manufacture. All components of the system are controlled from one of three PCs by the customised software (based on LabVIEW).  Also included in the system are the programs Octopus for CT reconstruction and VGStudio Max for 3D image display and analysis.

http://www.gtglobaltrader.com/news/chinese-research-contract-helps-derbys-scitek-develop

http://www.youtube.com/watch?v=sbXwGB0BmPU